성전의 원주율(pi)
“또 바다를 부어 만들었으니 그 직경이 십 규빗이요 그 모양이 둥글며 그 높이는 다섯 규빗이요 주위는 삼십 규빗 줄을 두를 만하며”(왕상7:23) “바다의 두께는 한 손 너비만 하고 그것의 가는 백합화의 양식으로 잔 가와 같이 만들었으니 그 바다에는 이천 밧을 담겠더라”(26절)
열왕기 7:23은 이례적으로 솔로몬이 구리 바다를 어떻게 만들었는지에 관해 기록하고 있다. “그 직경이 십 규빗이요 그 모양이 둥글며 그 높이는 다섯 규빗이요 주위는 삼십 규빗 줄을 두를 만하며”이라고 말한다.
많은 무신론자와 회의주의자들이 이 구절로 성경을 비평해왔다. 그들은 오류가 없다고 주장하는 책에 제시된 수치들이 부정확하다고 반박했다. 그들은 지름 10규빗에 둘레 30규빗은 그 두 수치가 원주율에 의해 정해지므로 불가능하다는 것이다.
오늘날 수학에서 확정된 상수인 파이는 원의 둘레를 지름으로 나눔으로써 발견되었다. 그래서 만약 솔로몬이 구리 바다의 지름을 10규빗으로 만들었으면 둘레는 반드시 31과 ½ 규빗이 되어야 한다는 것이다.
그 회의주의자들은 26절의 둘레 가장자리가 한 손의 넓이로 있었다는 기록에 주의를 기울이지 않았다. 일 규빗은 18인치이고 한 손의 폭은 4인치이다. 그래서 바다의 둘레(23절의 30규빗으로 계산산하면-역자 주)는 540인치가 된다. 가장자리에서 가장자리까지는 180인치이나, 바다의 지름을 계산하려면 손의 폭의 두배를 빼야 하는데 그럼 172인치가 된다. 둘레 540인치를 지름 172인치로 나누면 3.1395가 되는데 이는 오차가 겨우 0.07%밖에 안 되므로 파이 값 3.1416과 거의 완벽하게 일치한다. 당시로는 아주 정확한 잣대로 정확하게 측정하여 제조되었던 것이다.
이런 사소한 수학적 교훈은 예상한대로 우리가 전제하고 있는 성경의 신뢰성과 일치한한다.
Author: Paul F. Taylor
Ref: Lisle, J. (2009), As easy as pi, < https://answersingenesis.org/contradictions-in-the-bible/as-easy-as-pi/ >, accessed 8/21/2017. © 2022 Creation Moments. All rights reserved.